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Nonlinear forecasting for the classification of
natural time seriesf

By GEORGE SUGIHARA

Scripps Institution of Oceanography, University of California at San Diego,
La Jolla, California 92093-0202, U.S.A.
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There is a growing trend in the natural sciences to view time series as prod-
ucts of dynamical systems. This viewpoint has proven to be particularly useful
in stimulating debate and insight into the nature of the underlying generating
mechanisms. Here I review some of the issues concerning the use of forecasting
in the detection of nonlinearities and possible chaos, particularly with regard to
stochastic chaos. Moreover, it is shown how recent attempts to measure meaning-
ful Lyapunov exponents for ecological data are fundamentally flawed, and that
when observational noise is convolved with process noise, computing Lyapunov
exponents for the real system will be difficult. Such problems pave the way for
more operational definitions of dynamic complexity (cf. Yao & Tong, this vol-
ume).

Aside from its use in the characterization of chaos, nonlinear forecasting can
be used more broadly in pragmatic classification problems. Here I review a recent
example of nonlinear forecasting as it is applied to classify human heart rhythms.
In particular, it is shown how forecast nonlinearity can be a good discriminator of
the physiological effects of age, and how prediction—decay may discriminate heart-
disease. In so doing, I introduce a method for characterizing nonlinearity using
‘S-maps’ and a method for analysing multiple short time series with composite
attractors.
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1. Introduction

Suppose we are given a time series such as the one shown in figure la, where
we have few preconceptions. These are data for the Scripps Pier diatoms that
were extracted from a record that W. E. Allen collected over a 20 year period
(Tont 1981). From a dynamical systems viewpoint, three potential sources of com-

2 plexity here are: (1) observational or measurement error; (2) the dimensionality
> > of the system, or the possible action of many variables (possibly giving rise to
oF process noise); and (3) the multiplicative or nonlinear interaction of these vari-
4 ﬁ ables. Herein, such nonlinear behaviour, both chaotic and stable, shall be called
Q) ‘dynamic complexity’.
O Real time series such as this one probably contains a mixture of these effects,
=w and in the past decade, there has been a special focus in the natural sciences
=
93 ‘ R ,
EQ t This paper was produced from the author’s disk by using the TEX typesetting system.
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Figure 1. (a) Scripps Pier diatom series. Weekly abundances first differenced. (b) Predictability
(correlation coefficient, p) versus embedding dimension for the Scripps diatoms. Note the peak
in predictability at m = 3, followed by a broad decline. The nonlinear predictor used here and
in (¢), (d) and (f) is an S-map (see §2) with 6 = 0.75. (c), (d) Prediction-decay plots. (e)
DVS plot (see §1b(i)). Note the similarity between this plot and the one obtained in figure
4b for stochastic chaos. (f) A difference plot (§2) to detect nonlinearity in these data. 6 = 0
corresponds to the global linear model; the model becomes more nonlinear as 6 is tuned upwards.
Notice how markedly predictability is improved as the model becomes more nonlinear. A simple
difference test (§2a) for the Ho : plinear = Pronlinear Suggests rejection of Hy at p < 0.0005.
(After Sugihara & May 1990.)
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Figure 2. (a) Classification of null alternatives under the assumption of observational noise. (b)
Classification of null alternatives under the assumption of process noise. Process noise is that
part of the system which is unexplained and is approximated as IID noise. Strictly speaking with
process noise there can be no deterministic chaos, except in the limiting case (no process noise)
or in a noise-free skeleton.

to uncover evidence for dynamic complexity (Ascioti et al. 1993; Lefebvre et al.
1993; Tsonis 1993; Greshenfeld & Weigend 1993). The compelling reasons for this
interest are that both nonlinearity and chaos can hold out the promise of produc-
ing complex time signatures with relatively simple (low dimensional) underlying
dynamics, and the acknowledgment that such nonlinearity may allow improved
short-term predictability while at the same time it can place limits on long-term
forecastabilty. That is, one would like to learn the limits to forecastabilty, how
complex the phenomenon is, and how important nonlinear effects should be in
the structure of an explicit model.

I shall now review some of the issues in this search, particularly as they apply
to uncovering nonlinearities in biology where the issues differ in a fundamental
way from those in the conventional signal-processing literature.

2. Observational noise

Figure 2a shows the alternatives that need to be considered when one is only
considering observational noise. Here, given the noise-free process, S; = F(S;_1),
S; € R™, the series that is actually observed is

Xt = h(St) + €obs (21)

X, € R, h is the observation function that maps points in R™ to R', and €,
is the 11D observational error. Most of the early work which involved forecasting
focused on distinguishing chaos from measurement noise (Casdagli 1989; Sugihara
& May 1990; Casdagli et al. 1992). This is an especially important distinction
in ecological data where population estimates may vary over several orders of
magnitude. Forecast performance is used as the criterion for judging both the
sufficiency of an embedding and the nonlinearity of the process. Simple scaling
rules have been developed for (2.1) to distinguish the decay in predictability that
would be expected from chaotic signals (Wales 1991) versus those from linear and
fractal processes contaminated with white and coloured noise (Tsonis & Elsnor

Phil. Trans. R. Soc. Lond. A (1994)
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480 G. Sugihara

1992). The basic philosophy here is that the model that produces the best out-of-
sample forecast is the best dynamical description of the data. Thus a time series
would be classified as nonlinear, if a nonlinear model is capable of producing
significantly better forecasts (out-of-sample) than an equivalent linear model.
And it would be further classified as chaotic if, in addition, there was evidence of
rapid (exponential) decay in predictability characteristic of chaotic systems. The
obvious appeal is in its directness and in the relatively modest amounts of data
it requires (Sugihara & May 1990). The method is easy to apply and, as we shall
see, can also be applied to study cases with process noise.

(a) Process noise and stochastic chaos

As shown in figure 2b, the problem appears to become more complicated in
terms of the number of alternatives that need to be considered when the deci-
sion is made to explicitly add process noise to the picture. In the exploration of
real data, this is ultimately a philosophical decision. Process noise is that part
of the system dynamics that remains unexplained. According to this view, the
underlying system consists of an explained part (that which is modelled, or the
noise-free skeleton) and an unexplained part (approximated by 1IID noise of some
kind, €process). NoOtice that process noise will generally be a function of the noise-
free map that is chosen. Thus, according to this view, the real m-dimensional
system dynamics can only be approximated in k& dimensions, with the dynamics
in the remaining m — k dimensions approximated as noise. Hence, if the true
system dynamics are

S, = F(St—l)
S, € R™. Then in R*, k < m, we have
Zt == J(St),

where J behaves like an observation function, mapping R™ to R*. But notice
that

Zt 7& G(Zt—l)a
where G is a diffeomorphism since the trajectories are no longer unique (may

cross). Thus, we approximate the full m-dimensional dynamics in k¥ dimensions
as

Zt ~ G(Zt—lyeprocess)a (22)
where G(Z,_,) is the modelled part or noise-free skeleton and the dynamics in the
remaining m—k dimensions are approximated as IID noise of some kind. A specific
form for incorporating process noise which is commonly studied is one where
Z, = G(Z;_,) is the noise-free map, and error-free (in terms of measurement

error) observations on the system are approximated (although equality is used)
as

Zt = G(Zt——l + 6process)- (23)

In this example, process noise is added and iterated through the dynamics of a

noise-free map. The invariant measure for the system is induced by the process
noise.

An interesting phenomenon that emerges with process noise is stochastic chaos

(Tong 1990; Chan & Tong 1994; Rand & Wilson 1991; Sidorowich 1992), which

is likely the most ubiquitous form of chaos in nature. This is illustrated by the

Phil. Trans. R. Soc. Lond. A (1994)
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Nonlinear forecasting for the classification of natural time series 481

noise-driven logistic map with a two-point cycle shown in figure 3. Here, X; =
aXi—1(1 — X4—1) + €processs & = 3.4, €process 15 gaussian (0,0) with the domain
boundaries (0,1) treated as reflecting barriers, to keep the function restricted to
the interval (0,1). Again, the invariant measure, or the specific sequence of points
visited on the noise-free map is not determined by the map itself, but by the
interaction of the noise on the map. Thus, if the Lyapunov exponent, L, for the
system is calculated from the geometric mean of the jacobian elements, J, the
invariant measure must be induced by the noise:

1
L= lim - .
Jim 3 S In(|J])

If the noise level is increased from zero to very low levels, there is a tendency to
drift slightly away from the 2-point equilibria, initially spending more time vis-
iting flatter portions of the map (net contraction) to yield more stable dynamics
(figure 3b,d). As the noise level is increased a bit further, steeper, unstable por-
tions of the map are visited more frequently (regions of net divergence), and the
Lyapunov exponent can become positive. Thus, the system can become stochas-
tically chaotic, although the skeleton is stable (figure 3¢, d), and such behaviour
can be achieved at very low noise levels (o = 0.05). In this example, the Lyapunov
exponent appears to be a smooth function of noise level (figure 3d).

(i) Identifying stochastic chaos

Strictly speaking, deterministic chaos (the right-hand limb of figure 2b) does
not exist for a system with process noise; only stochastic chaos is possible. It may
exist as an abstraction for a noise-free skeleton, and as will be discussed, this may
be a reasonable thing to consider in certain circumstances such as noise-filtering
in engineering applications (Abarbanel et al. 1993); however, for a natural system
with process noise, the noise-free skeleton may have no meaning at all. Here the
difficult alternatives that one wants to distinguish are stable versus unstable
nonlinear stochasticity (stochastic chaos).

(ii) DVS plots

Figure 4b shows an attempt to use Casdagli’s DVS criterion to make this dis-
tinction (Casdagli 1992) for the noise-driven logistic example. This forecasting
test, which shall be explained in more detail in § 2, involves constructing a series
of local linear maps from different numbers of neighbours. The maps constructed
from very small neighbourhoods are essentially nonlinear models, and the map
constructed from all neighbours is the global linear model. The main idea il-
lustrated in figure 4a is that if the data are from a chaotic process then the
local linear models with few neighbours should outperform those with large or
intermediate numbers of neighbours; if the data are from a nonlinear stochastic
process, the peak in performance should be realized at intermediate numbers of
neighbours; whereas, if the data are from a linear process, the global linear model
should perform best. This elegant criterion has been shown to work well at dis-
tinguishing those alternatives for which it was designed, but as seen in 4b, it does
not distinguish stable versus unstable nonlinear stochasticity in any obvious way.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 3. Stochastic chaos induced by the action of gaussian noise on a stable period-2 quadratic
map (Xi41 = 3.2X:(1—X¢)+e€). (a) The noise-free (¢ = 0) time-2 map. (b) Shows what portions
of the noise free map are hit as a very small level of noise (¢ = 0.005) is introduced. Notice
that because the system spends more time in the flatter more stable portions of the map, it is
actually more stable than the noise-free map. (¢) Has a slightly higher noise level (¢ = 0.1) and
shows how the system spends more time in the steeper unstable portions of the map (repellor
regions where the tangent [slope| > 1). (d) Summarizes these effects showing how the Lyapunov
exponent for the system (invariant measure is induced by the noise) is a smooth function of
noise level. Thus, process noise can induce chaos even if the noise-free skeleton is chosen to be
stable.

(iii) Prediction—decay curves

Prediction—decay curves are obtained by plotting the correlation coefficient
(Sugihara & May 1990; Wales 1991; Tsonis & Elsnor 1992) or r.m.s. error (Farmer
& Sidorowich 1987) (both either logged or unlogged) against prediction time (7},).
As can be seen in figure 4c, stable systems will decay, however, at a rate which is
considerably slower than the exponentially decaying unstable cases. Stable sys-
tems decay because the gaussian noise which is small on average, will occasionally
produce a value from the tails of the distribution that will push the system into
a repellor region (unstable or local divergence). Uniform noise from a distribu-
tion whose width is smaller than the smallest domain of attraction around the
time-2 fixed points, will not decay. Thus, in general, one should expect steeper
prediction—decay curves when the system is chaotic and shallower ones when it
is stable. As can be seen in figure 4c, this qualitative distinction may be useful at
identifying the extremes, but there is a smooth (albeit sharp with respect to in-
creasing noise level) continuum in between, where the distinction will be blurred
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Figure 4. The use of forecast methods to detect stochastic chaos. (a) Hypothetical example
of Casdagli’s (1992) DVS plot to distinguish between chaotic, nonlinear stochastic, and linear
stochastic alternatives. (b) DVS plots for the data in figure 3, to distinguish stable (solid lines)
from unstable (dashed lines) nonlinear stochasticity. (c), (d) Prediction-decay curves to dis-
tinguish stable (solid lines) from unstable (dashed lines) nonlinear stochasticity. As expected
(Sugihara & May 1990; Wales 1991), the stable cases exhibit slow decay while the unstable
(chaotic) cases exhibit rapid exponential decay. With uniform noise instead of gaussian, the
stable cases will show no decay.

in any practical sense. None the less, applied with care, prediction—decay curves
can be a useful tool for distinguishing between stable and chaotic stochasticity.

(iv) Lyapunov exponents and reality

Another way to make this distinction is to approximate the noise-free map with
a smooth fitted function (Crutchfield & MacNamara 1987; Tong 1990; Nychka et

Phil. Trans. R. Soc. Lond. A (1994)
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al. 1992) and then repeat the process used to compute the Lyapunov exponents
in figure 3d. This idea has recently been applied, however incorrectly, in ecology
(Ellner 1991; Turchin & Taylor 1992; Hastings et al. 1993; Hanski et al. 1993)
where Lyapunov exponents have been computed for the abstracted noise-free
maps, rather than for the system (in some cases fitting R® surfaces to time-series
containing as few as 30 points!). In the fitting procedure the process noise is
assumed to have the specific additive form of (2.3). However, it is then ignored in
the invariant measure for the system. Computing Lyapunov exponents for a noise-
free skeleton may make sense in engineering applications for noise-reduction, or
if the skeleton is a classical or a well-defined fundamental model. Thus, if one
has a transistor which is fed noisy inputs, where the noise-free skeleton is the
action of the transistor, it is meaningful here to try to filter out the noise and
understand the transistor. However, when one is trying to understand a natural
system such as the Scripps diatom data in figure 1, and the map is obtained by
phenomenological fitting so that one really does not know what it represents,
it can be a meaningless exercise (e.g. are the coordinates all biological or could
physical forcing be represented? What are the subsystem boundaries?). Moreover,
whether the skeleton is linear or nonlinear or stable or unstable can depend to an
uncomfortable extent on the method of fitting that one chooses to apply to the
small noisy data sets that biologists must typically work with. Thus, although
one can in principle compute Lyapunov exponents for a noise-free skeleton and
determine whether it is deterministically chaotic by the rigorous definition, it is
uncertain what this determination actually means, when the real dynamics are
assumed to contain noise.

Although with model data from our noisy logistic example it may be possible
to get reasonable estimates of the Lyapunov exponent, with real data, where
observational noise may be involved, this may not be possible (Yao & Tong,
this volume). With observational noise convolved on top of process noise we are
looking at data of the form

Yt = h(Zt) + €obs)

where again, Z;, = G(Z;_1 + €process)s Z: € R¥, k < m, and h maps R* to R'.
The difficult problem is not in estimating some noise-free skeleton (Nychka et
al. 1992; Turchin & Taylor 1992; Hastings et al. 1993). Rather, the difficulty,
which may not have a practical solution (e.g. in terms of data requirements), is
in disentangling the process noise from the observational noise to reconstruct the
invariant measure. One can no longer simply compute products of the jacobians
from the time series itself because the invariant measure is contaminated with
observational noise. Unless there is prior knowledge of the observational noise or
the process noise, it is difficult to see how an invariant measure for the system
can be deduced from the data. More work needs to be done here.

(b) Should we care about chaos?

The above conundrum has prompted Yao & Tong (this volume) to propose
an alternative definition of sensitive dependence that appears to be more prac-
tical than Lyapunov exponents. One of the central reasons for wanting to know
whether a system is chaotic is the possibility of low-dimensional determinism.
This motivation is somewhat diminished by the fact and probable ubiquity of
stochastic chaos, where ultimately the driving force for prediction decay might

Phil. Trans. R. Soc. Lond. A (1994)
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Nonlinear forecasting for the classification of natural time series 485

be the interaction of some lower dimensional map with the remaining high di-
mensional process noise.

Regardless of the fact that we still cannot compute meaningful Lyapunov expo-
nents, the various other methods that have been developed for nonlinear analysis
of time series remain useful tools for understanding nature and for constructing
arguments for chaotic dynamics. These include the new criterion of Yao & Tong
(this volume), nonlinear forecasting (Kravtsov & Etkin 1984; Sugihara & May
1990; Casdagli 1989, 1992), and the use of null models (Brock 1986; Osborne &
Provenzale 1987; Theiler et al. 1991). Forecast methods may be especially useful
since they regard any process noise as may be present as convolved in the system.
The three-way forecast criterion of Sugihara & May requires: (1) finding an op-
timal low-dimensional model (optimal in terms of a peak in predictability versus
embedding); (2) demonstration of strong nonlinearity (nonlinear model performs
significantly better than linear model); and (3) steeply declining prediction—decay
curves. The emphasis is on nonlinearity and forecast decay. Operational methods
such as this are easy to implement and may provide good evidence (albeit not
‘proof’) for the operation of chaotic dynamics narrowly defined. Alternatively,
one could take the three-way criterion as an ‘operational definition’ of chaos.

3. Sequential locally weighted global linear maps: SLWGLM (or
‘S-map’)

The idea of locally weighted maps has been discussed in various contexts in the
statistics literature (Cleveland 1979; Hardle 1990; Tong 1990), by connectionists
(Bottou 1993), and in the literature on dynamical systems (Crutchfield 1979;
Kravtsov & Etkin 1984; Crutchfield & MacNamara 1987; Farmer & Sidorowich
1987; Casdagli 1989, 1992; Casdagli et al. 1991, 1992; Diebold & Nason 1990;
Stokbro & Umberger 1992). Such ideas have also been discussed in relation to the
geometry of the attractor (Sugihara & May 1990; Mees 1991). I will now describe
a predictor which is similar to several of the above techniques, but which gives
more skilful forecasts when the time signature contains a mixture of linear and
nonlinear components. Moreover, like Casdagli’s DVS model, this model can span
the spectrum of models from global linear to local nonlinear, and as described in
the next section, it can provide a simple test for nonlinearity in a time series (see
also the elegant BDS criterion of Brock et al. (1987)).

Suppose we have an embedding of an observed time series X; € R™*!, where
X;(0) = 1 (for the constant term in the solution of (3.2) below). Let the time
series value T}, time steps forward be Xt+TP(1) =Y,. Then the forecast at T, is

%= GOIX). (3.1)

For each predictee, X, one finds the svD solution for C by using historical points
from the fitting set or library set (referred to below by the subscript ‘i’) as follows:

B=AC, (3.2)

where
B =w(||Xi — Xu|)Y:, Ay =w(||Xi — X)) X:(4)

Phil. Trans. R. Soc. Lond. A (1994)
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and
w(d) = e %% (3.3)

6 > 0, d is the distance between the predictee and the neighbour vector, and
the scale factor, d, is the average distance between neighbours. Note that A has
dimensions n; X (m+1), where n, is size of the library. To maintain independence
in the out-of-sample solution for each fitted map, I eliminate all vectors from the
library whose coordinates include any of the coordinates of the predictee X; in
the time series. Thus for each prediction, I construct a different exponentially
weighted global linear map, where the degree of the local weighting is controlled
by 6. If # = 0, we have the simple global linear solution, as 6 is tuned to higher
positive values, the solutions become more local and hence nonlinear.

Notice that if instead of (3.3), the weighting function is w(d) = 1 for d < k
and w(d) = 0 otherwise, one recovers the local linear maps described by Cas-
dagli (1992) and Diebold & Nason (1990). When there is a mixture of linear
and nonlinear signal in the data (e.g. nonlinear response to regular forcing) this
weighting function can penalize distant points too severely (zero weight); thus
the exponential but global fit was chosen for this particular S-map.

(a) The difference test: Scripps diatoms

S-maps can provide a useful way to characterize the degree of nonlinearity in a
stationary time series in terms of the difference in forecast skill achieved with a
nonlinear versus a linear model (see also the bi-spectrum of Subba Rao & Gabor
(1984) and Subba Rao (1991) and the BDS test of Brock et al. (1987, 1991) and
Brock & Potter (1993). In figure 1f it is applied to the Scripps diatom data, where
the difference in linear versus nonlinear predictability is shown as a function of 6.
Comparisons of forecast skill achieved with nonlinear versus linear models shall
be called ‘difference tests’. As described in Sugihara & May (1990), one can ask
whether the difference between linear and nonlinear models is significant simply
by comparing the two correlation coefficients. This can be done by computing a z-
statistic (Fisher’s z-transform for the product moment correlation coefficient) to
test the null hypothesis that puonlinear = Plinear- Lhe availability of this standard
test was one of the reasons that Sugihara & May (1990) used the correlation
coefficient to measure predictability.

As can be seen, this difference is highly significant in the diatom data (p <
0.0005). This strong nonlinearity, combined with the steep prediction—decay curve
(figure 1c,d) is evidence for the operation of chaotic dynamics. Notice further,
how similar this DVS plot looks (figure 1d) to those obtained in figure 4b for
stochastic chaos; both show a sharp decline in predictability as the global linear
map is approached.

(b) The difference test: surrogate measles

Figure 5 contains another example of a difference test as applied to the New
York measles data (Schaffer 1985a,b; Olsen et al. 1988) and data from a null
hypothesis (Stone 1992) which questioned the characterization of these data as
an example of chaotic dynamics (Schaffer et al. 1988, 1990; Olsen et al. 1988;
Sugihara & May 1990; Sugihara et al. 1990). This rather complicated null hy-
pothesis incorporated much of the natural detail of the epidemic. Indeed there
was some question as to its neutrality as a null hypothesis (Stone 1992). It was
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Figure 5. Test of Stone’s surrogate null hypothesis for measles using a difference test and an
S-map. (a) The real NY measles epidemic series. (b) A typical surrogate series constructed by
stitching together empirically fit gaussian wave forms. (¢) The difference plot for NY measles
showing how strongly nonlinear the real data are (p < 0.005). (¢) The difference plot for surrogate
data is not nonlinear. When the correlation coefficients (S-map, § = 1) for surrogate measles and
the real data are compared using a z-statistic, one can reject this null hypothesis (p < 0.0005).

constructed by stitching together gaussian wave forms taken from four empirically
fit distributions sampled in a probabilistic order that would mimic the pattern
observed. As seen in figure 5b, it very effectively mimics the general shape and fea-
tures of the original measles data (figure 5a). These surrogates also had a degree
of predictability which was similar to the real data (using a nonlinear forecast
model) and which had similarly steep prediction—decay curves, yet were not from
a chaotic process. This prompted Stone to accept the null hypothesis. However,
as seen in figure 5c, d, they do not have the same apparent degree of nonlinearity
as the natural data. One can safely reject this null hypothesis at the p < 0.0001
level. The difference between linear and nonlinear predictability is an important
characteristic to consider when constructing null models to study chaos (see fig-
ure 2), and is useful in distinguishing chaos from coloured noise (Sugihara & May
1990).

4. Broader applications of nonlinear forecasting in medicine

The aim of this next section is to show how, apart from addressing the more
narrow question of detecting chaos, nonlinear methods can have other important
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applications in the biological sciences. In particular, it is shown how the key
characteristics, nonlinearity and prediction—decay, can be useful attributes for
the pragmatic classification of medical time series.

(a) Human heart thythms and forecasting for practical diagnosis

An area of application where nonlinear methods and forecasting will likely have
a great deal to offer is in the study of human heart rhythms and in particular
the characterization and diagnosis of pathologies. This is an area where there has
been some very strong theoretical work (e.g. Glass & Mackey 1988), however,
less has been done in the way of applying modern time series methods to analyse
empirical EKG data (Lefebvre et al. 1993; Lipshitz & Goldberger 1992; Gough
1992; Skinner et al. 1990; Goldberger et al. 1990, 1984).

Two important results from the empirical analysis of human heart rhythms
have to do with differences in RR-intervals as a function of age, and those differ-
ences in heart rhythms that may be associated with heart disease. With regard to
age, Kaplan et al. (1991) found that young healthy hearts contain a high degree
of variability (measured in terms of standard deviation) which becomes dimin-
ished as a normal part of the aging process. Lipshitz & Goldberger (1992) found
a decrease in the correlation dimension with age. As regards health, Kleiger et al.
(1987), showed how after an acute myocardial infarction, low heart rate variabil-
ity (low variance in RR-intervals) is associated with increased mortality. Lefebvre
et al. (1993) found significant differences in predictability with nonlinear forecast
methods, between older patients who had suffered a heart attack and older pa-
tients who had not. They also found suggestive differences (though not significant)
in the rate of prediction—decay of diseased versus healthy patients.

Here, I shall apply the S-map given in (3.1) to EKG data from 29 patients kindly
provided by J. Lefebvre, M. Kamath, D. Goodings and M. Fallen (see Lefebvre et
al. (1993) for details). The aim of this exercise is to determine whether the degree
of nonlinearity (difference test) and the rate of prediction-decay can discriminate
age and health. I shall do this in two ways: by modelling each patient separately
and by creating composite mappings for each group.

In all cases, I shall use first-differenced data embedded with a standard lag
of 1 and an embedding dimension m = 7. This embedding convention was used
by Lefebvre et al. (1993) with the simplex predictor (Sugihara & May 1990),
and m = 7 is in the plateau of optimal predictability for all cases. Moreover, as
Lefebvre et al. (1993) noted, a vector having seven components is just long enough
to span a complete respiratory cycle with respiration likely being an important
controlling factor.

(i) Modelling individual attractors

Figure 6 shows illustrative examples of prediction—decay curves and difference
plots constructed by comparing changes in absolute forecast error for a young
versus an old healthy patient (6¢,d) and for a healthy versus a heart-diseased
patient (6a,b). For reasons which will be explained in the next section, absolute
forecast error is a better discriminator of heart disease than the correlation coef-
ficient. Table 1 presents the group means and the significance levels obtained for
these two comparisons. As can be seen, both nonlinearity (as measured by the
difference in absolute forecast error) and decay are highly significant discrimina-
tors of heart disease, however, only nonlinearity is a good discriminator of age.
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Figure 6. Illustrative example of the classification of human heart rates by age and health using
nonlinearity (decrease in absolute forecast error) and prediction-decay slope. (a) Difference plot
showing how this healthy patient (patient OH1 in Lefebvre et al. 1993) has a greater decrease
in absolute forecast error with increasing nonlinearity (hence, is more nonlinear) than a patient
who has heart disease (patient NB1). (b) Prediction—-decay curves for the same patients, showing
how healthy patients have steeper prediction—decay curves than heart-diseased patients. (e)
Difference plot showing how a young healthy patient (patient YH1 in Lefebvre et al. 1993) has a
greater decrease in absolute forecast error with increasing nonlinearity (hence, is more nonlinear)
than an older healthy patient (patient OH3). (d) Prediction—decay curves for the same subjects,
showing how prediction—decay slope does not distinguish age (see table 1 for ensemble statistics).

The more rapid prediction decay in healthy versus diseased patients is consistent
with the suggestive result reported by Lefebvre et al. (1993).

Figure 7 shows a weak positive relationship between nonlinearity and decay.
Note that this relationship only becomes significant when the axes are log trans-
formed. Although the evidence is not compelling in this specific example, such
‘difference-decay’ plots may be a useful tool when exploring for chaos in real data.
With chaotic dynamics one might expect a tendency toward a positive relation-
ship between nonlinearity and decay.

(ii) Modelling composite attractors

When individual time series are short, one can imagine constructing a compos-
ite attractor by piecing together segments from individuals (samples) belonging
to a particular homogeneous group. Thus one could construct composite maps
that are intended to capture the dynamical mean of a group. This might be most
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Table 1. EKG study — summary of results for individual maps: mean values and significance

levels

(Mean values and significance levels (t-test) for the difference in absolute forecast error realized
with a nonlinear model (§ = 1) against a global linear model (@ = 0), and for prediction—decay

slopes.)
nonlinearity pred.—decay
diff. (error) D slope P
healthy 1.065 0.163
n =14
p < 0.005 p < 0.005
disease 0.314 0.102
n =15
young 1.670 0.162
n==~6
p < 0.005 p <04 (ns.)
old 0.609 0.164
n =3y
0 .
2
L
= 1 )
< @
.2
S ]
o a
£ 2P, T o
o0 a a a a
L o a
a a
-3 - = T v T \
-4 -2 0 2

log (difference in absolute forecast error)

Figure 7. Difference-decay plot showing a weak relationship (p = 0.333, 0.25 < p < 0.05)
between prediction—decay slope and nonlinearity for the 29 patients taken as a group. Note that
the axes are log-transformed.

useful when individual time series are short or for data-intensive calculations such
as measuring the correlation dimension.

Here I have created composite attractors for each of the four groups. Het-
eroscedasticity is minimized by normalizing the means (= 0) and variances (=
1) for each group before concatenating the time series. To avoid the problems
created by the discontinuities at the seams between time series, I eliminate
m x T+max(T},) time series values before and after the joints from all calculations
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Figure 8. Use of normalized composite maps for the classification of human heart rates (see
table 2 for summary statistics).

Table 2. EKG study - summary of results from normalized composite maps (N = 5000 in all

cases)
nonlinearity predictability pred.—decay
diff. (error) P P p slope P

/)‘
T healthy 0.015 0.420 0.309

~ p < 0.2 (ns.) p < 0.0005 p < 0.025
~ disease 0.016 0.351 0.111
NP
@) = young 0.023 0.522 0.266
& 23] p < 0.0001 p < 0.0001 p < 0.5 (n.s.)

— old 0.011 0.378 0.260
= O
L O
=

(libraries and predictions). To speed calculations, and to normalize comparisons,
each composite S-map was constructed from 5000 randomly sampled vectors.
Figure 8 shows the prediction—decay curves and the difference plots obtained
by comparing changes in absolute forecast error for the young attractor versus
the old healthy map (8¢, d) and for the healthy versus heart-diseased map (8a, b).
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Table 2 summarizes the comparisons. One should take special note that by nor-
malizing the variances of all groups we have effectively factored out variance as a
discriminating variable. Thus, any effect that is seen here is over and above the
effect of variance in classifying heart rhythms. As with the individual maps, with
the composite maps, prediction decay slope is not a significant discriminator of
age but is a significant discriminator of health (p < 0.01). The healthy attractor
had a more precipitous decay (reaching the noise floor at T, = 6 beats, roughly
the time for one breathing cycle) than the diseased attractor (hit the noise floor
at T, = 11 beats). As with the individual maps, nonlinearity in the normalized
composite maps was a good discriminator of age however, unlike the individual
maps it was not a good discriminator of health. This difference is due to the
normalization of variances in the composite maps. Just as mean and variance
scale together, improvements in absolute forecast error seen in the individual
case should scale with the magnitude of the excursions (standard deviation) in
the time series. That is, where the absolute magnitude of the excursions is large,
the absolute magnitude of the improvement in predictability is large. Therefore,
in terms of diagnosing heart-disease, nonlinearity per se does not contain signifi-
cantly more information than is already contained in the variance.

As shown in table 2, predictability with the nonlinear model (§ = 1) is much
higher in the normalized map for the young subjects than for the old subjects.
It is interesting that the heart rates for the young subjects which appeared more
variable, are in fact more predictable when the data are normalized. This is likely
due to there being more homogeneity in the young group than in the other groups
(Sugihara 1994). The strong trends in predictablity shown here are not found in
the unnormalized data (Lefebvre et al. 1993), where differences in the variances
of the RR-intervals will confound this result.

To summarize, these preliminary results show that over and above variance,
prediction—decay is a good discriminator of health; healthy patients have a much
steeper decay curve than those with heart disease. And nonlinearity is a good dis-
criminator of age; younger adults have more nonlinearity to their heart rhythms
than older ones. In addition, nonlinear predictability appears to be a good clas-
sifier of age in the normalized maps.

(b) Infant heart rhythms

As a suggestive element to add to the results above, I shall briefly mention work
in progress with W. Allan and D. Sobel on the development of heart rhythms in
infants that shows a very different pattern.

Allan & Sobel (1992) hypothesize that because other autonomic nervous sys-
tem functions such as pupilary reflex seem to mature at about 30 weeks, that
somewhere between 25 and 35 weeks sympathetic and parasympathetic balance
evolves and contributes to irregularity in heart rate.

Figure 9 shows an illustrative example of this possibility for an infant aged 25
weeks and one aged 40 weeks. Here the S-map was applied to heart rate data taken
by chest leads, n = 1000. I emphasize that these are very preliminary results.
Although one cannot generalize from a sample of 1, it is intriguing nonetheless to
hypothesize that heart rhythms might follow an ontogenetic sequence, starting
out simple with high short-term linear autocorrelation, maturing to nonlinearity
at birth; then from young adulthood onwards simplifying with age to a signal
that is once again more strongly dominated by linear characteristics.
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Figure 9. An anecdotal comparison of heart rate nonlinearity in an infant 25 weeks and an infant
40 weeks. The younger infant did not have the nonlinearity that was present in the older infant.

5. Summary

In summary, despite concerns over the feasibility of a rigorous test for chaos
in real data (from the calculation of meaningful Lyapunov exponents) there are
methods available that allow one to gather qualitative evidence for the operation
of such dynamics. Moreover, the narrow question of chaos aside, as I have tried to
suggest with the EKG study, there are useful and important ways that nonlinear
methods can be applied in the natural sciences.

I thank Martin Casdagli, Jim Crutchfield, Dennis Grace, Cleridy Lenhert, Richard Penner and
John Sidorowich for helpful and challenging discussions. I am indebted to Julie Lefebvre, Mark
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their thorough and insightful comments on the final manuscript. This work was funded in part
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